Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(4): e0124523, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38470028

RESUMO

Lytic bacteriophages Mossy and Erutan were directly isolated from desert soil on Gordonia rubripertincta and characterized by their morphologies and genomes. Mossy, part of the DJ cluster of Actinobacteriophage, has a genome of 61,183 bp. The genome of Erutan, part of the DV cluster, is 66,957 bp.

2.
Microbiol Resour Announc ; 12(10): e0049523, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37681972

RESUMO

Cellulomonas sp. strain ES6 is a chromate-reducing bacterium isolated from chromium contaminated subsurface sediment. Illumina MiSeq and Oxford Nanopore sequencing were used to assemble the genome sequence which consisted of a single circular chromosome of 4.13 Mb, contained 3,960 protein encoding genes and with an overall G + C content 75.38%.

3.
Microbiol Resour Announc ; 11(11): e0095822, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36314913

RESUMO

Two lytic phages infecting Gordonia rubripertincta were isolated from irrigated desert soil. Phage LilyPad and PokyPuppy have 64,158-bp and 77,065-bp genomes, respectively. Based on gene content similarity to phages in the Actinobacteriophage database, LilyPad is assigned to phage subcluster DG1 and PokyPuppy to subcluster CS2.

4.
Mil Med Res ; 5(1): 16, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29793555

RESUMO

BACKGROUND: Ballistics gelatin is a common tissue surrogate used in bacterial contamination models for projectile wounds. Although these studies have demonstrated that bacteria are transferred from the surface of the gelatin to the wound track by a projectile, quantifiable results have been inconsistent and not repeatable in successive tests. METHODS: In this study, five areas of a typical contamination model in which bacterial recovery or survival are affected were identified for optimization. The first was a contaminated "skin" surrogate, where the novel use of vacuum filtration of a bacterial culture and buffer onto filter paper was employed. The other possibly problematic areas of the bacterial distribution model included the determination of bacterial survival when the contamination model is dried, survival in solid and molten gelatin, and the effect of high-intensity lights used for recording high-speed video. RESULTS: Vacuum filtration of bacteria and buffer resulted in a consistent bacterial distribution and recovery. The use of phosphate buffer M9 (pH 7) aided in neutralizing the ballistics gelatin and improving bacterial survival in solid gelatin. Additionally, the use of high-intensity lights to record high-speed video and the use of a 42°C water bath to melt the gelatin were found to be bactericidal for gram-positive and gram-negative bacteria. CONCLUSIONS: Multiple areas of a typical contamination model in which bacterial survival may be impeded were identified, and methods were proposed to improve survival in each area. These methods may be used to optimize the results of bacterial contamination models for medical applications, such as understanding the progression of infection in penetrating wounds and to identify possible sources of contamination for forensic purposes.


Assuntos
Bactérias/patogenicidade , Gelatina/análise , Infecção dos Ferimentos/classificação , Ferimentos por Arma de Fogo/complicações , Balística Forense/métodos , Humanos , Modelos Biológicos
5.
Biotechnol Biofuels ; 11: 110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686728

RESUMO

BACKGROUND: Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX. RESULTS: Molecular analysis using high-density oligonucleotide microarrays was performed on A. acidocaldarius strain ATCC27009 when growing on WAX. When a culture growing exponentially at the expense of arabinoxylan saccharides was challenged with glucose or xylose, most glycoside hydrolases were downregulated. Interestingly, regulation was more intense when xylose was added to the culture than when glucose was added, showing a clear departure from classical carbon catabolite repression demonstrated by many Gram-positive bacteria. In silico analyses of the regulated glycoside hydrolases, along with the results from the microarray analyses, yielded a potential mechanism for arabinoxylan metabolism by A. acidocaldarius. Glycoside hydrolases expressed by this strain may have broad substrate specificity, and initial hydrolysis is catalyzed by an extracellular xylanase, while subsequent steps are likely performed inside the growing cell. CONCLUSIONS: Glycoside hydrolases, for the most part, appear to be found in clusters, throughout the A. acidocaldarius genome. Not all of the glycoside hydrolase genes found at loci within these clusters were regulated during the experiment, indicating that a specific subset of the 19 glycoside hydrolase genes found in A. acidocaldarius were used during metabolism of WAX. While specific functions of the glycoside hydrolases were not tested as part of the research discussed, many of the glycoside hydrolases found in the A. acidocaldarius Type Strain appear to have a broader substrate range than that represented by the glycoside hydrolase family in which the enzymes were categorized.

6.
Genes (Basel) ; 9(4)2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29677156

RESUMO

The haloarchaea are unusual in possessing genes for multiple homologs to the ubiquitous single-stranded DNA binding protein (SSB or replication protein A, RPA) found in all three domains of life. Halobacterium salinarum contains five homologs: two are eukaryotic in organization, two are prokaryotic and are encoded on the minichromosomes, and one is uniquely euryarchaeal. Radiation-resistant mutants previously isolated show upregulation of one of the eukaryotic-type RPA genes. Here, we have created deletions in the five RPA operons. These deletion mutants were exposed to DNA-damaging conditions: ionizing radiation, UV radiation, and mitomycin C. Deletion of the euryarchaeal homolog, although not lethal as in Haloferax volcanii, causes severe sensitivity to all of these agents. Deletion of the other RPA/SSB homologs imparts a variable sensitivity to these DNA-damaging agents, suggesting that the different RPA homologs have specialized roles depending on the type of genomic insult encountered.

7.
J Ind Microbiol Biotechnol ; 44(10): 1443-1458, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28776272

RESUMO

Alicyclobacillus acidocaldarius is a thermoacidophilic bacterium capable of growth on sugars from plant biomass. Carbon catabolite repression (CCR) allows bacteria to focus cellular resources on a sugar that provides efficient growth, but also allows sequential, rather than simultaneous use when more than one sugar is present. The A. acidocaldarius genome encodes all components of CCR, but transporters encoded are multifacilitator superfamily and ATP-binding cassette-type transporters, uncommon for CCR. Therefore, global transcriptome analysis of A. acidocaldarius grown on xylose or fructose was performed in chemostats, followed by attempted induction of CCR with glucose or arabinose. Alicyclobacillus acidocaldarius grew while simultaneously metabolizing xylose and glucose, xylose and arabinose, and fructose and glucose, indicating that CCR did not control carbon metabolism. Microarrays showed down-regulation of genes during growth on one sugar compared to two, and occurred primarily in genes encoding: (1) regulators; (2) enzymes for cell wall synthesis; and (3) sugar transporters.


Assuntos
Alicyclobacillus/metabolismo , Hexoses/metabolismo , Pentoses/metabolismo , Trifosfato de Adenosina/metabolismo , Alicyclobacillus/genética , Arabinose/metabolismo , Transporte Biológico , Biomassa , Carbono/metabolismo , Repressão Catabólica , Parede Celular/metabolismo , Regulação para Baixo , Frutose/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Xilose/metabolismo
8.
Astrobiology ; 17(3): 253-265, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28282220

RESUMO

Planetary protection is governed by the Outer Space Treaty and includes the practice of protecting planetary bodies from contamination by Earth life. Although studies are constantly expanding our knowledge about life in extreme environments, it is still unclear what the probability is for terrestrial organisms to survive and grow on Mars. Having this knowledge is paramount to addressing whether microorganisms transported from Earth could negatively impact future space exploration. The objectives of this study were to identify cultivable microorganisms collected from the surface of the Mars Science Laboratory, to distinguish which of the cultivable microorganisms can utilize energy sources potentially available on Mars, and to determine the survival of the cultivable microorganisms upon exposure to physiological stresses present on the martian surface. Approximately 66% (237) of the 358 microorganisms identified are related to members of the Bacillus genus, although surprisingly, 22% of all isolates belong to non-spore-forming genera. A small number could grow by reduction of potential growth substrates found on Mars, such as perchlorate and sulfate, and many were resistant to desiccation and ultraviolet radiation (UVC). While most isolates either grew in media containing ≥10% NaCl or at 4°C, many grew when multiple physiological stresses were applied. The study yields details about the microorganisms that inhabit the surfaces of spacecraft after microbial reduction measures, information that will help gauge whether microorganisms from Earth pose a forward contamination risk that could impact future planetary protection policy. Key Words: Planetary protection-Spore-Bioburden-MSL-Curiosity-Contamination-Mars. Astrobiology 17, 253-265.


Assuntos
Bactérias/metabolismo , Meio Ambiente Extraterreno , Laboratórios , Marte , Viabilidade Microbiana , Astronave , Aerobiose , Anaerobiose , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/efeitos da radiação , Dessecação , Elétrons , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Peróxidos/toxicidade , Filogenia , Raios Ultravioleta
9.
Trends Biotechnol ; 32(12): 637-44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25457813

RESUMO

Metabolic engineering is a powerful biotechnological tool that finds, among others, increased use in constructing microbial strains for higher lactic acid productivity, lower costs and reduced pollution. Engineering the metabolic pathways has concentrated on improving the lactic acid fermentation parameters, enhancing the acid tolerance of production organisms and their abilities to utilize a broad range of substrates, including fermentable biomass-derived sugars. Recent efforts have focused on metabolic engineering of lactic acid bacteria as they produce high yields and have a small genome size that facilitates their genetic manipulation. We summarize here the current trends in metabolic engineering techniques and strategies for manipulating lactic acid producing organisms developed to address and overcome major challenges in the lactic acid production process.


Assuntos
Ácido Láctico/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Engenharia Metabólica/métodos , Carboidratos/análise , Citosol/química , Engenharia Metabólica/tendências , Redes e Vias Metabólicas/genética
10.
Genome Announc ; 2(2)2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24675849

RESUMO

We report here the draft genome sequence of the novel homofermentative Enterococcus faecalis isolate CBRD01, which is capable of high lactic acid productivity and yields, with minimal nutritional requirements. The genome is 2.8 Mbp, with 37% G+C, and contains genes for two lactate dehydrogenase (LDH) enzymes found in related organisms.

11.
J Microbiol Methods ; 99: 22-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24491836

RESUMO

The model archaeon Halobacterium salinarum ssp. NRC-1 is an excellent system for the study of archaeal molecular biology. Unlike many other archaea, its only special growth requirement is high levels of sodium chloride and other salts; it requires neither high-temperature incubation nor anaerobic environments. Additionally, there are a number of well-developed post-genomic tools available, including whole-genome microarrays and a ura3-based gene deletion system. While some tools are available for protein expression, a system for measurement and purification of protein expressed from native promoters is lacking. We have adapted the established H. salinarum gene deletion system for this purpose, and have used this to place 8×-histidine tags on either the carboxyl or amino terminus of the protein encoded by the chromosomal rfa3 gene. To demonstrate the utility of this approach, we used Western blot analysis to determine levels of the Rfa3 protein under different conditions. This system provides another powerful molecular tool for studies of native protein expression and for simple protein purification in H. salinarum.


Assuntos
Deleção de Genes , Técnicas de Inativação de Genes/métodos , Halobacterium salinarum/genética , Técnicas Microbiológicas/métodos , Biologia Molecular/métodos
12.
PLoS One ; 8(8): e71651, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951213

RESUMO

Recent evidence has implicated single-stranded DNA-binding protein (SSB) expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Deinococcus/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Tolerância a Radiação/genética , Proteínas de Bactérias/metabolismo , Partículas beta , Replicação do DNA/efeitos da radiação , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Teste de Complementação Genética , Viabilidade Microbiana/efeitos da radiação , Tolerância a Radiação/efeitos da radiação , Transcrição Gênica , Raios Ultravioleta
13.
Radiat Res ; 168(4): 507-14, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17903038

RESUMO

Extremely halophilic archaea are highly resistant to multiple stressors, including radiation, desiccation and salinity. To study the basis of stress resistance and determine the maximum tolerance to ionizing radiation, we exposed cultures of the model halophile Halobacterium sp. NRC-1 to four cycles of irradiation with high doses of 18-20 MeV electrons. Two independently obtained mutants displayed an LD(50) > 11 kGy, which is higher than the LD(50) of the extremely radiation-resistant bacterium Deinococcus radiodurans. Whole-genome transcriptome analysis comparing the mutants to the parental wild-type strain revealed up-regulation of an operon containing two single-stranded DNA-binding protein (RPA) genes, VNG2160 (rfa3) and VNG2162, and a third gene of unknown function, VNG2163. The putative transcription start site for the rfa3 operon was mapped approximately 40 bp upstream of the ATG start codon, and a classical TATA-box motif was found centered about 25 bp further upstream. We propose that RPA facilitates DNA repair machinery and/or protects repair intermediates to maximize the ionizing radiation resistance of this archaeon.


Assuntos
Regulação da Expressão Gênica em Archaea , Halobacterium/efeitos da radiação , Proteína de Replicação A/genética , Sequência de Bases , Reparo do DNA , Halobacterium/genética , Dose Letal Mediana , Dados de Sequência Molecular , Mutação , Óperon , Regiões Promotoras Genéticas , Tolerância a Radiação , Transcrição Gênica
14.
Mutat Res ; 597(1-2): 78-86, 2006 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-16413587

RESUMO

Radiation-induced bystander effects have been seen in mammalian cells from diverse origins. These effects can be transmitted through the medium to cells not present at the time of irradiation. We have developed an assay for detecting bystander effects in the unicellular eukaryote, the fission yeast Schizosaccharomyces pombe. This assay allows maximal exposure of unirradiated cells to cells that have received electron beam irradiation. S. pombe cells were irradiated with 16-18 MeV electrons from a pulsed electron LINAC. When survival of the irradiated cells decreased to approximately 50%, forward-mutation to 2-deoxy-d-glucose resistance increased in the unirradiated bystander cells. Further increase in dose had no additional effect on this increase. In order to detect this response, it was necessary for the irradiated cell/unirradiated cell ratio to be high. Other cellular stresses, such as heat treatment, UV irradiation, and bleomycin exposure, also caused a detectable response in untreated cells grown with the treated cells. We discuss evolutionary implications of these results.


Assuntos
Schizosaccharomyces/efeitos da radiação , Bleomicina/farmacologia , Dano ao DNA , Reparo do DNA , Desoxiglucose/farmacologia , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transdução de Sinais , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...